Terrain Effects on Wind Speed Enhanced by Atmospheric Stability

Jack Kline and Liz Walls RAM Associates

AWEA Wind Resource Seminar Pittsburgh, PA September 14, 2012

Data Sites

- Five Meteorological Towers used
- 4-60 m tilt-up & 1-100 m lattice tower
- 60 m towers have 3 levels of WS –
 redundant booms SW & SE, upper @ 57m
- Cell tower has WS to 100 m & two temperature sensors @ 99 m & 3 m. Used for shear alpha and delta-T
- Prevailing southerly & some northerly WD
- Wind speed analysis for both WD ranges

The Site - Southern Great Plains

RAM Associates

Average Conditions by WD

- Data period rather brief –
 March thru August 2012
- Distinct effects of terrain and stability still evident
- Site 1 57m used as reference. Wind speed ratios to Site 1 calculated
- WS ratios w.r.t.
 Site 1 flip when
 WD changes
 from north to
 south.

Mean Diurnal Ratios by WD

RAM Associates

Mean Diurnal Alpha & Delta-T by WD

Day – Unstable:

Alpha and ΔT diurnal trenus are very similar for both northerly and southerly WDs.

RAM Associates

Shear α vs. delta-T: N&S

RAM Associates

RAMWind Terrain Exposures

Exposure ~ integral of elevation differences between met tower & surrounding terrain, by direction. Weight by WD frequency

Larger values indicate greater overall elevation difference

Upwind exposure – related to terrain in direction wind comes from

Downwind exposure – related to terrain in direction wind is going to

Vertical Profile

RAM Associates

Mean WS vs. Exposure - North WD

RAM Associates

WS Ratio Map - North WD

RAM Associates

Mean WS vs. Exposure - South WD

- ➤ Same type of relationship between WS and exposure for northerly and southerly WDs.
- > Relative WS can change with WD due to UW & DW terrain effects.

WS Ratio Map – South WD

RAM Associates

WS Ratios vs. Exposure by Stability: Hi $\alpha >= 0.20$; Low $\alpha < 0.10$ – North WD

During northerly WD, higher sensitivity of WS to exposure during high atmospheric stability conditions.

WS Ratios vs. Exposure by Stability: Hi $\alpha >= 0.20$, Low $\alpha < 0.10$ – South WD

Similarly, during southerly WD, higher sensitivity of WS to exposure during high stability conditions.

High Stability Enhances Terrain Effects

- Sensitivity of WS to terrain defined by slope of WS ratios vs. exposure
- Sensitivity to terrain increases as stability increases
- Stability defined by either ΔT or shear alpha exponent
- Analyze sensitivity vs. stability (ΔT) for all 24 diurnal WS ratios

Diurnal WS Sensitivity to Terrain

During both WD, as stability increases, the sensitivity of WS to UW and DW exposure increases.

Conclusions

- Terrain effects on wind speed highly dependent on atmospheric stability
- Relative WS can change with wind direction, due to UW & DW terrain effects
- Under stable conditions, higher UW
 exposure impedes wind flow (lower WS), but
 higher DW exposure enhances flow (higher
 WS).
- Sensitivity of WS to terrain is directly related to stability

